Bayesian Co-Boosting for Multi-modal Gesture Recognition

نویسندگان

  • Jiaxiang Wu
  • Jian Cheng
چکیده

With the development of data acquisition equipment, more and more modalities become available for gesture recognition. However, there still exist two critical issues for multimodal gesture recognition: how to select discriminative features for recognition and how to fuse features from different modalities. In this paper, we propose a novel Bayesian Co-Boosting framework for multi-modal gesture recognition. Inspired by boosting learning and co-training method, our proposed framework combines multiple collaboratively trained weak classifiers to construct the final strong classifier for the recognition task. During each iteration round, we randomly sample a number of feature subsets and estimate weak classifier’s parameters for each subset. The optimal weak classifier and its corresponding feature subset are retained for strong classifier construction. Furthermore, we define an upper bound of training error and derive the update rule of instance’s weight, which guarantees the error upper bound to be minimized through iterations. For demonstration, we present an implementation of our framework using hidden Markov models as weak classifiers. We perform extensive experiments using the ChaLearn MMGR and ChAirGest data sets, in which our approach achieves 97.63% and 96.53% accuracy respectively on each publicly available data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-modal Gesture Recognition Using Skeletal Joints and Motion Trail Model

This paper proposes a novel approach to multi-modal gesture recognition by using skeletal joints and motion trail model. The approach includes two modules, i.e. spotting and recognition. In the spotting module, a continuous gesture sequence is segmented into individual gesture intervals based on hand joint positions within a sliding window. In the recognition module, three models are combined t...

متن کامل

Learning Dynamic Naive Bayesian Classifiers

Hidden Markov models are a powerful technique to model and classify temporal sequences, such as in speech and gesture recognition. However, defining these models is still an art: the designer has to establish by trial and error the number of hidden states, the relevant observations, etc. We propose an extension of hidden Markov models, called dynamic naive Bayesian classifiers, and a methodolog...

متن کامل

Multi-Agent Gesture Interpretation for Robotic Cable Harnessing

Gesture-Based Programming is our paradigm to ease the burden of programming robots. It is an extension of the human demonstration approach that includes encapsulated expertise to guide subtask segmentation and robust real-time execution. A variety of human gestures must be recognized to provide a useful and intuitive interface for the human demonstrator. While the full gesture-based programming...

متن کامل

Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures

The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the teraher...

متن کامل

Multi-person conversation via multi-modal interface - a robot who communicate with multi-user -

This paper describes a robot who converses with multi-person using his multi-modal interface. The multi-person conversation includes many new problems, which are not cared in the conventional oneto-one conversation: such as information flow problems (recognizing who is speaking and to whom he is speaking / appealing to whom the system is speaking), space information sharing problem and turn hol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014